Особенности пищеварения хищных птиц

Кишечник

Отличительной особенностью пищеварительной системы птиц является укороченный кишечник. Как и в случае с некоторыми другими органами, такое строение позволяет уменьшить массу тела птицы, поскольку остатки пищи в нем не задерживаются. Открытие сфинктера мускульного желудка позволяет измельченной массе перейти в двенадцатиперстную кишку, которая представляет передний отдел тонкого кишечника. В него входят каналы печени, поджелудочной железы и желчного пузыря. В результате выделения их ферментов происходит полное переваривание пищи. Усвояемость и всасывание в кровь питательных веществ происходит по всей длине тонкой кишки.

У голубя своеобразно устроены желчные протоки. На месте, где двенадцатиперстная кишка закручивается в петлю, располагается поджелудочная железа с наличием двух-трех протоков. Сюда же входят и желчные каналы печени, поэтому голуби не нуждаются в желчном пузыре.

Между тонким и толстым кишечником располагаются слепые отростки, которые развиты только у пернатых, кормящихся растительностью. Прямая кишка является самым широким отделом кишечника. У кур она составляет около 7 см в длину и 2 см в диаметре. У сельскохозяйственных особей слепые отростки выполняют следующие функции:

  • расщепляют клетчатку посредством ферментов микрофлоры;
  • синтезируют витамины;
  • преобразуют азотистые вещества;
  • всасывают воду и минералы.

Выделительная система

Как уже упоминалось, устройство организма в целом, в том числе и пищеварительной системы птиц, направлено на уменьшение их веса, в связи со способностью летать. Выделительную систему представляют мочеточники и парные почки. Благодаря тому что пернатые лишены мочевого пузыря, в их организме не накапливаются продукты метаболизма. Это значительно отражается на их массе. У женских особей отсутствует правый яичник.

Каудальный отрезок прямой кишки расширен и представляет клоаку, покрытую одним слоем призматического эпителия. Она делится на три части посредством двух поперечных колец. Передний отдел является каловым синусом, средний – синусом для открытия мочеточников, семяпроводов и яйцеводов. Ворсинки и железы в этой области отсутствуют. Слизистый слой клоаки имеет волнообразную структуру. У таких птиц, как лебедь, гусак и селезень, ее стенки преобразуются в орган совокупления. Границей между прямой кишкой и клоакой служит внутренний сфинктер в виде кольцеобразной мышцы. Отверстие клоаки выстлано многослойным эпителием. Такая особенность слизистой свойственна гусям. В ней также имеются образования лимфоидного происхождения. Строение пищеварительной системы птиц заканчивается анальным сфинктером.

Вышеизложенная информация – это общая характеристика сведений в области биологии. Пищеварительная система птиц на самом деле очень индивидуальна. Ее различия определяет вид особи, тип пищи, происхождение, образ жизни, а также взаимодействие пернатых с окружающей средой и ареал их обитания.

Дыхательная система

Для обеспечения интенсивного обмена веществ при полёте птицам необходимо большое количество кислорода. В процессе эволюции у птиц сложилась уникальная система, так называемое непрерывное дыхание. Вентиляция лёгких происходит при помощи воздушных мешков, которые имеются в настоящее время только у птиц (возможно, они имелись у динозавров).

Воздух движется всегда в одном направлении справа налево через лёгкие птицы, как при вдохе так и при выдохе. Показана дыхательная система Обыкновенной пустельги: 1 — шейный мешок, 2 — ключичный мешок, 3 — черепной воздушный мешок, 4 — хвостовой-грудной воздушный мешок, 5 — брюшной воздушный мешок (5′ — diverticulus тазового пояса), 6 — лёгкое, 7 — трахея

Воздушные мешки не участвуют в газообмене, а хранят воздух и действуют как меха, что позволяет лёгким сохранять свой объём при непрерывном протекании через них свежего воздуха.

Схема течения воздуха по лёгким птицы и воздушным мешкам на вдохе (верхнее изображение) и на выдохе

При течении воздуха через систему мешков и лёгкие не происходит смешивания богатого кислородом и бедного кислородом воздуха, в отличие от дыхательной системы млекопитающих. Благодаря этому парциальное давление кислорода в лёгких птиц сохраняется таким же, как и в воздухе, что приводит к более эффективному газообмену как по кислороду, так и по углекислому газу. Кроме того, воздух проходит через лёгкие как на вдохе, так и на выдохе, за счёт воздушных мешков, служащих резервуаром для следующей порции воздуха.

Лёгкие птиц не содержат альвеол, как у млекопитающих, а состоит из миллионов тонких парабронхов, соединённых на концах с дорсобронхами и вентобронхами. Вдоль каждого парабронха проходит капилляр. Кровь в них и воздух в парабронхах двигаются во встречных направлениях. Газообмен происходит через аэрогематический барьер.

Пищеварительная система

Птичий пищевод довольно растяжим, в особенности у тех птиц, которые по образу жизни вынуждены заглатывать крупную пищу (например, рыбу). У многих птиц часто встречается зоб — расширение пищевода, богатое железа́ми. Зоб служит хранилищем для пищи у тех птиц, которые питаются большим количеством пищи сразу, а затем длительно голодают. У таких птиц пища попадает в зоб, а затем постепенно поступает в желудок. У других птиц (куриные, попугаи) зоб начинает первичное расщепление пищи, и в желудок она поступает уже в полупереваренном виде. У хищных птиц зоб накапливает неперевариваемые частицы корма — перья, кости, шерсть и прочее, которые затем отрыгиваются в виде погадок. Зобные железы некоторых птиц (например, голубей) вырабатывают особый творожистый секрет — «птичье молоко» (зобное молоко), который используется для выкармливания птенцов. Молоко образуется и у самцов, и у самок. У фламинго и пингвинов похожий секрет выделяют железы пищевода и желудка.

Передний отдел желудка птиц называется железистый желудок; он подвергает пищу химической обработке, а задний отдел — мускульный желудок — обрабатывает пищу механически.

Железистый отдел желудка развит больше и лучше у тех птиц, которые заглатывают большой объем пищи за раз. Здесь из желез выделяются различные ферменты, помогающие растворить попавшую сюда пищу. Секрет пищеварительных желез птиц весьма эффективен. У многих хищных птиц он частично растворяет кости, а у рыбоядных — рыбью чешую. Однако у сов и сорокопутов кости не перевариваются. У всех видов птиц не перевариваются хитин, кератин и клетчатка (лишь частично усваивается у голубей, кур и уток благодаря живущим в кишечнике бактериям).

Мускульный отдел желудка отделен от кишечника сфинктером — кольцеобразным мускулом-сгибателем, который препятстсвует проникновению в кишки обломков костей и других непереваренных частиц. Мускульный желудок у зерноядных и питающихся членистоногими птиц (голуби, страусы, журавли, воробьиные, гуси, куры), как следует из его названия, отличается развитой мускулатурой, образующей сухожильные диски. В обработке пищи участвуют даже стенки желудка. У других птиц (плотоядные и рыбоядные) мускулатура мускульного отдела желудка развита не сильно, и здесь продолжается по большей части химическая обработка пищи с помощью ферментов поступающих сюда из железистого желудка. Трубчатые железы мускульного желудка многих птиц образуют кутикулу: твердую кератиновую оболочку, которая так же помогает механически обрабатывать пищу(перетирать). Некоторые птицы заглатывают камешки, стеклышки, косточки и прочее так же для лучшего перетирания пищи.

У рыбоядных птиц есть ещё и пилорический мешок, третий отдел желудка, в котором пища дополнительно подвергается ещё более тщательной обработке.

Переваренная в желудке пища поступает в двенадцатиперстную кишку, затем в тонкий кишечник. У многих птиц есть и слепые кишки, несущие пищеварительные функции, однако у некоторых птиц слепые кишки являются рудиментами. Наиболее развиты слепые кишки у растительноядных птиц.

Прямая кишка накапливает непереваренные остатки пищи, она переходит в клоаку. Клоака — орган, общий для птиц и их предков пресмыкающихся. В клоаку также открываются выводные протоки мочевой и половой систем. На спинной стороне клоаки расположена фабрициева сумка, орган, значительно редуцированный у взрослых птиц (начиная с 8—9-месячного возраста), но нормально функционирующий у молодых. Фабрициева сумка образует лимфоциты и оксифильные лейкоциты.

Печень птиц очень велика относительно размеров их тела, её желчные протоки впадают в двенадцатиперстную кишку. У большинства птиц есть и желчный пузырь, который снабжает большим количеством желчи кишечник для обработки водянистой и жирной пищи.

Поджелудочная железа птиц имеет разные формы и всегда хорошо развита, значительно больше, чем аналогичный орган у млекопитающих относительно размеров их тела. Поджелудочная железа крупнее у зерноядных и мельче у плотоядных птиц.

Процесс пищеварения проходит у птиц быстро и энергично. Мясо и плоды усваиваются быстрее, семена и зерна — медленнее. В течение суток птица может съесть очень много, и намного превысить необходимый минимум питательных веществ. Так, мелкие совы, например, переваривают мышь за 4 часа, воробьиные водянистые ягоды за 8—10 минут. Зерна у курицы перевариваются в течение 12—24 часов. Насекомоядные насыщаются 5—6 раз на дню, зерноядные два раза. Один-два раза в день кормятся хищные птицы. Мелкие птицы съедают за сутки около 1/4 своей массы, крупные около 1/10. Птенцы едят больше и чаще, чем взрослые птицы. Так, большая синица приносит пищу птенцам примерно 350—390 раз в сутки, а американский крапивник около 600 раз. Таким образом становится наглядным значение насекомоядных птиц в природе и жизни человека. По подсчетам Э. Н. Головановой (1975), семья скворцов поедает 70—80 г насекомых в сутки. В гнездовой период пара скворцов очищает 70 деревьев от гусениц непарного шелкопряда, 40 деревьев — от дубовой листовёртки.

Потребность организма птиц в воде невелика. Кожное испарение птиц незначительно, кроме того, вода из мочи всасывается обратно, когда моча находится в верхнем отделе клоаки. Плотоядные и плодоядные птицы не пьют вовсе.

Покровы

Тело птицы почти полностью покрыто перьями, являющимися производными чешуй рептилий и на ранних стадиях развивающихся сходным образом. Участки кожи, покрытые перьями (чаще всего полосами) — птерилии, свободные промежутки между ними — аптерии. Перья несколько отличаются по строению в зависимости от функции и расположении на теле. Главный пигмент — меланин, дающий все цвета от черного до желтого, но так же имеются и дополнительные (каротиноиды), например, у фазанов брачном наряде — красный астаксантин, зооксантин обеспечивает ярко-желтую окраску, например, у канареек, кроме того имеются уникальные каротиноиды у африканских турако (порфирин (красный) и тураковердин (зеленый), отличаются содержанием меди и железа соответственно).

Линька у многих видов взрослых птиц происходит дважды в год: до и после размножения, но существует множество вариантов. Механизм — расслоение эпидермиса с последующим выпадением перьев, причем эпидермис слоится и на аптериях (неоперенных участках) тоже. Смена перьев идет в определенном порядке, обусловленном гормонами гипофиза и щитовидной железы. Перед сезоном размножения обычно меняются только контурные, обуславливающие брачный наряд, а после размножения — тотальная смена (тоже по определенной схеме: как правило, от туловища к концам тела и таким образом, чтобы не вредить полету). У мелких обычно идет быстро, у крупных может идти и весь год (орлы). У водоплавающих линька идет очень бурно, поэтому после сезона размножения они не способны летать, вынуждены прятаться.

> Литература

  • «Мир Животных» в 7 тт. . 6 «Птицы» —М.: «Просвещение» 1986 г.
  • Зоология позвоночных, Дзержинский Ф. Я., Васильев Б. Д., Малахов В. В., 2013.

> Примечания

Особенности пищеварения у сельскохозяйственных птиц

Пищеварительная система птиц имеет морфофизиологические особенности, связанные с адаптацией к полету.

Из физиологических особенностей пищеварительного аппарата птиц отметим:

  • быстроту и высокую интенсивность процессов переваривания, всасывания и усвоения питательных веществ;
  • высокую скорость прохождения пищевых масс по пищеварительному тракту. Уровень продуктивности, вероятно, будет тем выше, чем выше скорость продвижения корма;
  • высокую пластичность и приспособленность к характеру корма.

Основными кормовыми средствами для птиц служат продукты растительного (зерно злаковых и бобовых, корни, стебли и листья) и животного происхождения (черви, насекомые и их личинки).

По способу питания птиц принято делить на преимущественно растительноядных (гуси), преимущественно мясоядных (утки) и всеядных (куры).

В условиях интенсивного промышленного производства традиционное деление домашних птиц на группы в известной степени потеряло смысл, так как основным кормовым средством становятся высококалорийные комбикорма с набором основных компонентов растительного и животного происхождения.

Пищеварение в ротовой полости. У кур отыскивание корма происходит под контролем зрения и осязания, обонятельная и вкусовая рецепция играют второстепенную роль.

У гусей и уток хорошо развита вкусовая рецепция. Гуси отдают предпочтение моркови, морковной ботве, хвощам.

Куры, индейки и голуби обладают только «дневным зрением», что обусловлено отсутствием в их сетчатке «колбочек». Поэтому световой режим сильно влияет на поедаемость кормов. Куры, даже будучи в голодном состоянии, не клюют зерно, если оно затенено.

Одна из особенностей птиц — отсутствие зубов. Корм захватывается клювом, форма которого неодинакова. У кур, индеек он короткий, заостренный, твердый. У уток мягкий, по краям находятся пластинки («зубы») для отцеживания корма, на клюве имеется ороговевший выступ (ноготок или коготок), служащий для обрывания травы. На языке есть ороговевшие сосочки, помогающие брать и удерживать корм.

Число клевательных движений у кур 180-240 в минуту. У индеек — 60. В ротовой полости (полости клюва) находятся многочисленные, но слабо развитые слюнные железы, выделяющие немного слюны.

По характеру секрета слюнные железы относятся к типу слизистых. В слюне много муцина, из ферментов есть птиалин (амилаза) и мальтаза, но их действие выражено слабо. В связи с тем, что корм в полости клюва находится кратковременно и не пережевывается, действие амилолитических ферментов слюны проявляется в зобе. Из-за методических трудностей физиология слюноотделения разработана слабо.

Пищеварение в зобе. У зерноядных птиц (кур, индеек, цесарок и голубей) хорошо развит зоб — расширение пищевода. Входное и выходное отверстия зоба ограничены сфинктерами. У кур вместимость зоба 100-120 г зерна, время пребывания корма в зобе от 3-4 до 16-18 ч. Оно зависит от вида корма. Твердый и сухой корм находится дольше, чем мягкий и влажный. Жидкий корм в зобе не задерживается.

У уток и гусей имеется ложный зоб — ампуловидное расширение пищевода.

Слизистая зоба образована железистым эпителием, ферменты не вырабатываются.

Зоб является органом-депо корма, вместе с этим здесь происходит изменение корма, он размягчается, набухает, перемешивается. Здесь происходит частичное переваривание питательных веществ, главным образом за счет ферментов корма, ферментов слюны и микроорганизмов, поступающих вместе с кормом. Основные обитатели содержимого зоба — лактобациллы, кишечная палочка, энтерококки, грибы, дрожжи, инфузории. Микрофлора осуществляет расщепление белков, жиров и особенно углеводов. В зобе переваривается 15—20% углеводов. Довольно интенсивно сбраживаются углеводы с образованием ЛЖК и молочной кислоты.

Вопрос о всасывании продуктов переваривания стенкой зоба остается открытым. Одни авторы, учитывая хорошее кровообращение зоба, допускают возможность всасывания глюкозы и продуктов брожения, другие считают, что всасывания в зобе не происходит.

У голубей в зобе образуется «зобное молочко» — белая жирная масса, продукт модифицированных эпителиальных клеток зоба. «Зобным молочком» голуби кормят своих птенцов в первые 10—16 дней. В составе «молочка» до 16% белка, 1,3% липидов, минеральные соли, витамин А и витамины группы В.

Между наполнением зоба и желудка имеется взаимосвязь. Импульсация с «пустого» желудка рефлекторно вызывает сокращение зоба и эвакуацию его содержимого. «Полный» желудок тормозит моторику зоба. Иннервируется зоб блуждающими нервами. Эвакуация содержимого зоба начинается через 1—3 ч после кормления. Общая продолжительность пребывания пищи в зобе у кур, индеек, голубей колеблется в пределах 3—18 ч.

Основной формой сокращения зоба являются перистальтические сокращения. Сокращения зоба зависят от степени его наполнения. Пустой зоб сокращается чаще, но с малой амплитудой. Моторика зоба регулируется симпатическими и парасимпатическими нервами. Раздражение парасимпатических нервов усиливает моторику зоба, симпатических — тормозит.

Желудок. Желудок птиц делится на два отдела: железистый и мышечный. Железистый желудок напоминает простой желудок млекопитающих, сильнее развит у хищных птиц. В слизистой насчитывается 30-40 пар крупных трубчатых желез, выводные протоки которых открываются на складках слизистой специальными сосочками. Объем железистого желудка очень мал, корм здесь не задерживается, поэтому и переваривания практически не происходит. Железистый желудок — лишь «поставщик» желудочного сока.

В слизистой оболочке желудка обнаружен только один вид секреторных клеток, объединяющих морфологические и функциональные признаки главных и обкладочных клеток. Предполагают, что апикальная часть клетки вырабатывает соляную кислоту, а базальная — пепсиноген. Общая кислотность желудочного сока у кур 0,3%, свободная — 0,1-0,25%, pH 1,5-2.

Кроме пепсиногена, в желудочном соке обнаружены другие протеолитические ферменты, в частности, желатиназа и гастриксин.

Данные о наличии в желудочном соке птиц липазы и особенно химозина, очевидно, основаны на недоразумении, полное отсутствие в рационе птиц молока делает их наличие маловероятным.

В 1 ч на 1 кг веса отделяется 6—9 мл желудочного сока. Секреция желудочного сока непрерывная, с волнообразными колебаниями интенсивности, усиливается после приема корма. Количество сока зависит от уровня пищевой возбудимости, вида корма (усиливается при даче овса, комбикорма), физиологического состояния (секреция усиливается в период яйценоскости и снижается при линьке) и условий содержания: даже кратковременное повышение температуры до 35°С резко угнетает сокоотделение. Неполноценное и однообразное кормление, недостаток в рационе минеральных веществ и витаминов ослабляют секрецию. Установлены две фазы желудочной секреции: сложнорефлекторная и нейрохимическая.

Основные процессы желудочного пищеварения происходят в мышечном желудке. Этот специализированный орган является гомологом пилорического отдела желудка млекопитающих, но выполняющий особую функцию. Мышечный желудок дискообразной формы с мощной гладкой мускулатурой. Его основная функция — сдавливание и перетирание пищи. Через каждые 20-30 секунд наблюдаются его периодические сокращения, в результате которых пища перемешивается. Давление в полости желудка достигает у кур 100-160, у уток — 180, у гусей — 265-285 мм рт. ст.

Слизистая оболочка ороговевает и называется кутикулой (кератиноидным покровом), состоящим из углеводно-протеинового комплекса, подобного мукополисахариду. Кутикула имеет механическое значение и предохраняет стенку желудка от действия пепсина и проникновения бактерий в кровь. Всасывания через кутикулу не происходит. Наиболее развита кутикула у птиц, получающих сухой и твердый корм. При длительном кормлении влажным кормом кутикула постепенно размягчается и даже исчезает.

В полости мышечного желудка присутствуют камешки, стекло, гравий и другие инородные тела — гастролиты, служащие для растирания и перемалывания корма. Курам лучше давать гравий из кварцита, не рекомендуется его заменять песком, ракушкой, известью, мелом, гипсом, так как, растворяясь соляной кислотой, они нарушают желудочное и кишечное пищеварение. При отсутствии гастролитов переваримость корма снижается. Основным стимулом для сокращения во время пищеварения является механическое раздражение стенки желудка. Регуляция моторной деятельности осуществляется нервно-гуморальным путем. Стимулирует моторику блуждающий нерв.

Помимо перетирания пищи, в мышечном желудке происходят интенсивные протеолитические процессы. Здесь расщепляется 17-25% углеводов, 9-11% жиров. Наиболее высокая интенсивность желудочного пищеварения у гусей, у них переваривается 20-40% корма. Опорожнение желудка у птиц происходит рефлекторно. Однако пилорический рефлекс птиц не аналогичен таковому у млекопитающих в силу особенностей строения сфинктера и наличия кислой среды по обе стороны от него. У гусей в период пищеварения химус в кишечник поступает непрерывно, у кур и уток — небольшими порциями.

Наряду с собственно желудочным пищеварением в полости желудка происходит гидролиз корма ферментами, которые забрасываются сюда из двенадцатиперстной кишки.

Кишечное пищеварение. Кишечник у кур относительно короткий, подразделяется на тонкий и толстый отделы. Особенностью кишечного пищеварения у птиц по сравнению с млекопитающими является более высокая концентрация водородных ионов, т. е. более низкие показатели pH во всех отделах тонкого кишечника.

Основные закономерности кишечного пищеварения и механизм регуляции функций главных пищеварительных желез принципиально не отличаются от тех, которые установлены школой И. П. Павлова для млекопитающих. Поэтому, не вдаваясь в подробности, перечислим основные особенности кишечного пищеварения у птиц:

  • наличие мощного ферментативного аппарата поджелудочной железы,
  • кишечное пищеварение очень интенсивное;
  • быстрое прохождение пищи через кишечник (у кур в среднем 24 ч).

Поджелудочный сок у всех видов сельскохозяйственных птиц отделяется непрерывно. Чистый сок представляет собой жидкость с удельным весом 1,0064-1,0108, pH 7,5-8,1. Поджелудочный сок птиц обладает протеолитической, амилолитической и липолитической активностью. Желчь у птиц представляет собой густую масляную жидкость темно-зеленого (пузырная желчь) или ярко-зеленого (печеночная желчь) цвета. Количество отделяемой желчи у птиц выше, чем у других сельскохозяйственных животных, кроме свиней (в пересчете на килограмм веса). Процесс желчеобразования у кур находится под нервно-гуморальным контролем.

Слизистая оболочка тонкого кишечника птиц подобна таковой млекопитающих. Особенностями строения слизистой птиц являются слабое развитие подслизистого слоя и отсутствие в нем бруннеровых желез. В теле ворсинок плохо выражены лимфатические полости и отсутствуют системы лимфатических протоков. Кишечный сок у птиц содержит энтерокиназу и обладает амилазной, мальтазной, сахаразной и пептидазной активностью. Подавляющее большинство ферментов в тонком кишечнике имеет, как и у млекопитающих, пристеночную локализацию.

К толстому отделу кишечника относится прямая кишка с парными слепыми отростками. В этих отростках происходят следующие процессы:

  • расщепление клетчатки с участием ферментов микрофлоры;
  • процессы протеолиза под влиянием ферментов тонкого кишечника;
  • процессы превращения азотистых веществ с участием микрофлоры;
  • синтез витаминов группы В;
  • всасывание воды и минеральных веществ.

Заполнение слепых кишок происходит за счет антиперистальтических движений прямой кишки и одновременной перистальтики самих отростков. Данный процесс происходит периодически, один раз в 35-70 мин. Моторика слепых отростков осуществляется автоматически. В слепых отростках толстого кишечника происходит гидролиз клетчатки целлюлозолитической микрофлорой, однако возможности переваривания клетчатки ограничены (расщепляется 10-30% клетчатки). После оперативного удаления слепых кишок переваривание клетчатки падает до нуля.

Заселение кишечника микрофлорой происходит после первого приема корма. Кроме целлюлозолитических бактерий, в толстом кишечнике обитают стрептококки, лактобациллы, кишечная палочка и другие. Бактерии осуществляют гидролиз белков, жиров и углеводов, а также осуществляют синтез витаминов группы В.

Следует, однако, учитывать, что микрофлора пищеварительного тракта нуждается в тех же питательных веществах, что и макроорганизм — происходит своеобразное соревнование за метаболиты. При сравнении влияния корма на рост стерильных (выращиваемых в стерильных условиях и получающих стерильный корм) и нестерильных (зараженных кишечной микрофлорой) цыплят, оказалось, что стерильные цыплята растут значительно лучше зараженных микрофлорой.

Толстый отдел кишечника впадает в клоаку, куда открываются также отверстия мочеточников и спермиопроводы (или яйцеводы). Прямая кишка открывается в каловый синус, где и происходит формирование кала. Последний, проходя через мочеполовой синус, смешивается с мочой. Здесь мочевая кислота кристаллизуется и покрывает каловые массы белым налетом. В таком полужидком состоянии помет выделяется наружу.

Определение потребности птицы в аминокислотах. Высокая яичная продуктивность кур, вызывающая колоссальное напряжение всего обмена веществ и в первую очередь белкового, обеспечивается в результате поступления с кормами достаточного количества протеина, качественно соответствующего потребности птицы. В среднем для образования одного яйца и осуществления обменных процессов взрослой курице требуется около 10—11 г усвоенного протеина с аминокислотным составом, сходным с аминокислотным составом яичного белка. Было установлено, что не только недостаток, но и избыток аминокислот вреден для цыплят.

В опыте, основанном на скармливании цыплятам пшеничного протеина, бедного лизином, было показано, что при добавлении его до 1% по отношению к воздушно-сухому веществу повышаются привесы и эффективность использования азота кормов. Если к пшеничному протеину, в котором не хватает лизина и содержится достаточно метионина и триптофана, добавить препараты двух последних аминокислот, привесы и использование азота понижаются по сравнению с соответствующими показателями, полученными при использовании такого же рациона без добавок. Введение избытка лизина в рацион дает также отрицательные результаты — при избытке лизина в корме у цыплят появляются признаки токсичности.

Недостаток хотя бы одной незаменимой аминокислоты в рационах несушек отрицательно влияет на продуктивность и качество яиц. В дальнейшем это положение было подтверждено многими исследователями.

В связи с тем, что избыток и недостаток аминокислот в рационах птицы — явление нежелательное, были проведены опыты, в которых установили потребность птицы в аминокислотах, особенно незаменимых. Балансирование рационов для цыплят по незаменимым аминокислотам и общему уровню протеина позволяет не только получать большие привесы, но и повысить эффективность использования кормов. При скармливании курам сбалансированных по аминокислотам кормов увеличивается яйценоскость и снижаются затраты на производство яиц.

В принципе методы определения потребности птицы в аминокислотах такие же, как и для других животных. Однако в технике проведения исследований на птице имеются особенности. Аминокислотную потребность устанавливают преимущественно в опытах при скармливании животным рационов с определенным набором кормов (или чистых аминокислот), дефицитных по требуемой аминокислоте. Рационы составляют с разным уровнем изучаемой аминокислоты. Результаты определяют по физиологическому состоянию, росту, продуктивности и балансу азота. Оптимальный уровень аминокислоты принимают за норму потребности. При оптимальном уровне аминокислоты в рационе физиологическое состояние птицы хорошее, продуктивность ее максимальная, молодняк дает наибольшие привесы, отмечается самая высокая эффективность использования корма и азота. Добсон, Андерсон и Варник (1964) опубликовали интересные исследования по изучению аминокислотной потребности цыплят на основе одновременного балансирования всех незаменимых аминокислот. Сущность их принципа сводится к следующему. За исходный берут рацион с оптимальным соотношением аминокислот на основании существующих литературных сведений. Затем в рационах уровень всех незаменимых аминокислот снижают на 10 или 15% и определяют уровень снижения привесов под действием каждой из этих аминокислот и рассчитывают среднее снижение. Если при уменьшении содержания данной аминокислоты в рационе снижение привеса больше, чем в среднем по всем группам, то уровень этой аминокислоты в рационе считается лимитирующим.

В результате проведения опытов по указанному выше принципу удалось получить такое соотношение аминокислот в рационе цыплят, при котором привесы их были на 25% выше привесов, полученных на рационах, составленных на основе рекомендаций по аминокислотной потребности

Национального научного комитета США по питанию животных (National Research Council, 1962).

По аминокислотному анализу яиц и мышечной ткани сделано заключение, что потребность птицы в аминокислотах для роста и производства яиц неодинакова. Потребность во многих аминокислотах, рассчитанная по результатам анализа тела, оказалась сходной с потребностью, определенной в кормовых опытах. Наиболее значительные расхождения обнаруживаются в аргинине, лейцине, триптофане, метионине с цистином и фенилаланине с тирозином. Можно заключить, что метод аминокислотного анализа организма дает вполне удовлетворительные результаты при определении потребности в лизине, гистидине, изолейцине, треонине, валине и глицине. Метод аминокислотного анализа организма с соответствующими поправками на скорость прохождения через него аминокислот можно использовать для определения потребности птицы в аргинине, лейцине, триптофане, метионине с цистином и фенилаланине с тирозином.

В последнее десятилетие для расчета аминокислотной потребности все шире используют метод, основанный на зависимости содержания свободных аминокислот в плазме крови от количества этих же аминокислот в рационе. Степень насыщения крови свободными аминокислотами согласуется со сравнительной концентрацией их в протеине корма. Потребность в аминокислотах, особенно при перерасчете на 100 г сырого протеина, у цыплят разного направления продуктивности неодинакова. Потребность цыплят разного направления продуктивности в аминокислотах изменяется с возрастом.

Установлено, что потребность в незаменимых аминокислотах возрастает в меньшей степени, чем увеличение протеина в рационе. Объяснить сущность этого явления пока трудно. Кроме того, в экспериментах установлено, что аминокислотная потребность цыплят и взрослой птицы зависит от энергетической ценности рациона.

В последнее время появляется все больше работ, свидетельствующих о влиянии заменимых аминокислот на потребность в незаменимых аминокислотах. При этом отмечается, что включение в рацион заменимых аминокислот оказывает больший эффект на привесы и использование азота, чем добавление соответствующих по количеству азота незаменимых аминокислот. Это убеждает в необходимости определения потребности цыплят и кур не только в незаменимых аминокислотах, но и в заменимых.

Основываясь на взаимосвязи обмена аргинина и цитруллина, аргинина и креатина, ученые установили и экспериментально подтвердили, что цитруллин и креатин могут заменить аргинин в рационах цыплят и кур. Включение в рацион креатинина и гуанидинацетата также обеспечивает хорошую продуктивность и увеличивает содержание аргинина и креатина в тканях. Оказалось также, что гомоцистеин способен заменять метионин в рационах цыплят и кур. Это основывается на его свойстве в присутствии донаторов метильных групп переходить в метионин. Известно также, что метионин в организме птицы может превращаться в цистин. Установлена взаимопревращаемость цистина и гомоцистеина. Никотиновая кислота в рационе птицы оказывает сберегающее действие на использование триптофана.

При изучении обмена глицина у цыплят выявлен целый ряд интересных закономерностей, которые следует учитывать при определении потребности в этой аминокислоте. Есть сведения, что включение ацетатов в рацион цыплят способствует увеличению синтеза глицина в их организме. Этаноламин также может замещать глицин в рационе цыплят. Предполагается, что этот процесс идет путем превращения этаноламина в соответствующий глюкоальдегид, который переходит в гликолевую кислоту, окисляющуюся далее в глиоксиловую. Этим не исключается возможность прямого окисления этаноламина в глицин без промежуточного дезаминирования.

Установлено, что ниацин имеет прямое отношение к обмену глицина, аргинина и аланина. Большие дозы глицина в рационе (свыше 2% к весу рациона) оказываются токсичными. При добавлении же ниацина цыплята безболезненно переносят даже 6% глицина в рационах. Возможно, что роль ниацина в обмене глицина и аргинина определяется участием его в обмене креатина или формировании хрящевой ткани. Фолиевая кислота и цианкобаламин (витамин B12) так же, как и ниацин, смягчают вредное действие избытка глицина.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Особенности пищеварения хищных птиц

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *